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SUMMARY:  The main aim of this work is to propose a numerical procedure for solving the 
saturation equation in RTM process simulation. In order to analyze in more detail the 
progressive impregnation of a fibrous preform by a fluid resin, the numerical model proposed 
here considers the flow through a partially saturated medium, including the dependence of 
permeability on the saturation degree. The model consists of an elliptic equation governing 
the pressure distribution and a transport hyperbolic equation describing the evolution of the 
saturation in RTM. A global flux limiter fixed mesh strategy is proposed for solving the 
transport equation with a source term. The flux limiter method has the ability to limit the extra 
numerical diffusion introduced by standard first-order schemes. This formulation can lead to 
improvements of existing RTM flow simulation codes and optimize the injection process. 
Preliminary numerical results are presented to validate this new approach.  
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INTRODUCTION 
 
Liquid Composites Molding (LCM) processes are based on a proper resin impregnation of the 
reinforcement. Modeling and simulation play an important role in the development and 
optimization of molds production and in devising appropriate resin injection strategies. 
Minimization of mold filling time without losing part quality is an important issue in Resin 
Transfer Molding (RTM). Inadequate injection strategies tend to create macro and micro-
voids in the part, the formation of which depends on fluid flow velocity. 
 
Over the last decades, different numerical techniques have been used to model the mold 
filling process in RTM. In general, RTM process simulation requires an accurate treatment of 
the advection equation which governs the evolution of different fluid properties: fluid 
presence function, incubation time, temperature, concentration of reacting components, 
degree of saturation, etc. In some of our former works [1, 2], a new procedure was proposed 
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to integrate accurately the transport of the different above mentioned fluid properties. In this 
work, the numerical procedure is extended for solving the transport equation governing the 
evolution of saturation in RTM during mold filling. In this model the permeability is assumed 
to be a function of saturation [3], and then the continuity equation that governs the pressure 
distribution includes a source term that depends on saturation. The presence of this source 
term explains the quadratic spatial pressure distribution in an unsaturated porous medium 
noticed in unidirectional flows. To derive a closed model the saturation equation is considered 
whose source term depends on the micro and macro voids content. 
 
The technique here used is based on a flux limiter fixed mesh strategy for solving the 
transport equation which governs the evolution of degree of saturation. It is well-known that 
spurious oscillations in the computed solution can be avoided by using first-order upwind 
discretization schemes, but unfortunately these first order schemes introduce an excessive 
numerical diffusion. One alternative for avoiding non-physical oscillations, reducing the extra 
numerical diffusion, lies in the use of second-order numerical fluxes in the regions where the 
solution is smooth enough that reduce to first-order in presence of discontinuities. This 
technique was successfully used for computing the volume fraction evolution in [1]. 
 
 

GOVERNING EQUATIONS 
 
The model which describe the mould filling process is given by Darcy´s law 
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μ
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combined with the continuity equation, which should account for the loss of resin due to the 
perform impregnation. This can be done by incorporating a source term in the mass balance 
equation 
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where v is Darcy velocity, K is the preform permeability tensor, μ is the fluid viscosity, φ is 
the porosity of the fibrous reinforcement, p is the resin pressure and S the degree of 
saturation. In order to evaluate the permeability, we make use of the model proposed by 
Breard et al. [3] to predict void formation in LCM. Then the permeability in Darcy’s law 
should be considered as the product of the geometrical permeability, KSat, and a relative 
permeability Krel (S), 
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where the relative permeability depends on the saturation degree 
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and β is a fitting factor whose usual values range in the interval [ ]0.4,0.8  [3]. Combining 
Eqn. 1 and 2 yields 
 

( )( ) φ μ⎛ ⎞ ∂
∇ ⋅ ∇ = ⎜ ⎟ ∂⎝ ⎠

unsat
sat

SK S p
K t

 (5)  

 
Finally, to close the problem, we assume that saturation is governed by the following 
transport equation [3, 5]: 
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where the source term can take different forms. According to the model proposed by Breard et 
al. [3], the source terms writes: 
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as in the model of Ruiz et al. [5]. In this latter approach, αM and αm represent the dispersion 
coefficients of the macro and micro voids, respectively, and QS is a function of the modified 
capillary number [3]. 
 
The saturation S takes a unit value in the saturated domain, a zero value in the empty region 
and varies between 0 and 1 in the partially saturated region. The whole domain has been 
designated by Ω and its boundary by ∂Ω. Initially, we assume the condition 
 

( )
0

, 0
1

x
S x t

x −

∈Ω⎧
= = ⎨ ∈∂Ω⎩

 (9)  

 
where the saturation function on the inflow boundary −Ω∂  is assumed unchanged during the 
filling process, that is: 
 

( ), 1S x t−∈∂Ω =  (10)  
 

The filling process simulation involves at each time step:  

1. The calculation of saturation dependent permeability as well as the calculation of the 
source term of Eqn. (5). 

2. The calculation of the pressure distribution by applying a standard finite element 
discretization of Eqn. (5). 

3. The calculation of the velocity field from Darcy´s law (1). 



 

4. Updating of saturation is done by integrating Eqn.(6) using a flux limiter technique. 
 

The boundary conditions are given by: 
• The pressure gradient in the normal direction to the mold walls vanishes.  
• The pressure or the flow rate is specified on the inflow boundary (injection nozzle). 
• The pressure is zero in the empty part of mold. 

 
 

THE ADVECTION EQUATION 
 
The saturation equation has a hyperbolic character, needing for appropriate stabilizations. In 
this section we propose a flux-limiter technique for its solution. For the sake of simplicity 
from now on we only consider one dimensional models. 
 
In the one-dimensional case Eqn.  (6) reads: 
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and defining the flux as vF S
φ

= , Eqn. (11) can be integrated by applying a second-order 

upwind scheme preserving the TVD property [6], whose discrete form writes: 
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Here h represents the mesh size, Δt the time step and χ(r) is the flux limiter function. For the 
aproximation of the source term, and considering the model (7) 
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or using the expression of the source term given by (8) 
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The superscript UP is associated with the first-order upwind scheme and the superscript SW 
with the second-order scheme using a modified flux limiter technique (in our case the Sweby 
flux limiter). To define the coefficient ri+1/2 in Eqn. (13), we propose to define its value 



 

comparing consecutive variations of the approximate numerical solution with respect to the 
flow direction [6]: 
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The Sweby flux limiter reads [6]: 
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In general, ( ) 0rχ = if 0r ≤  what guarantees that the scheme will be of first-order in the 
neighbourhood of a discontinuity, since 0r ≤  implies that the slopes of the solution have 
opposite signs. On the other hand, it is necessary that (1) 1χ =  to obtain a second-order 
scheme in smooth regions of the solution. The limiter function should be chosen verifying 
both conditions and maximizing the antidiffusive flux. We remark in Eqn. (13) that the choice 

( ) 0,  r rχ = ∀ gives rise to the original first-order upwind method, whereas the choice 
( ) 1,  r rχ = ∀ defines a fully second-order scheme. Hence, the proposed hybrid scheme, with 

0 ( ) 1rχ≤ ≤  in Eqn.  (13), is of second-order in smooth regions of the solution but it is a first-
order method when a discontinuity is present. This allows avoid the spurious numerical 
oscillations associated with the conventional second-order methods in the presence of 
discontinuities and reduces the excessive numerical diffusion introduced by the first-order 
upwind schemes. 

 

NUMERICAL SIMULATIONS 
 
In order to analyze the accuracy and efficiency of the proposed numerical scheme just 
described for the discretization of the transport equation governing the evolution of the 
saturation, where the source term is given by Eqn. (8), we analyze some one dimensional 
described [3]. A mold of 0.5 m length is considered. A constant injection pressure is 
prescribed (10-5 Pa) with a saturated permeability Ksat = 5.10-11 m2 and resin viscosity 0.1Pa.s. 
For the numerical simulation, we consider a time step of 0.1 seconds with αM  = αm = 10-10 
and a constant value RS = 0.8. The domain is assumed initially empty, except the first element 
that represents the injection nozzle that is assumed fully filled.  
 
To analyze the influence of mesh size on the simulated results, three meshes with different 
nodal distributions are considered, consisting in 30, 60 and 150 nodes, respectively. The 
associated numerical solutions are depicted in Fig. 1 for a filling time of 700 seconds, using 
the first-order scheme (Eqn. (12)-(13) with χ(r) = 0) and using the Sweby flux limiter scheme 
(Eqn.  (12)-(13) with χ(r) defined by Eqn. (17)). We notice that the convergence is faster 
when the flux limiter second-order scheme is considered. 
 



 

0

0,2

0,4

0,6

0,8

1

0 0,1 0,2 0,3 0,4 0,5

Sa
tu

ra
tio

n

Length (m)

150 Nodes

30 Nodes

First Order
T=700 sec.

0

0,2

0,4

0,6

0,8

1

0 0,1 0,2 0,3 0,4 0,5

Sa
tu

ra
tio

n

Length (m)

150 Nodes

30 Nodes

Second  Order
T=700 sec.

 
 

Fig. 1  Numerical results for saturation with the first-order scheme (left)  
and Sweby flux limiter (right). 

 
Fig. 1 proves also that the diffusivity of the scheme decreases with the mesh refinement. It 
can be noticed that the use of a first-order scheme introduces a significant numerical over-
diffusion. Obviously, there are two terms that contribute to the front smoothing, the one 
related to the source term, and the one purely numerical introduced by the dicretization 
scheme. The last one can be reduced by using higher-order schemes and fine enough meshes. 
 
Fig. 2 depicts the saturation profile each 100 seconds by applying both the first-order and  the 
Sweby flux limiter scheme when 150 nodes are used in the space discretization. We can 
appreciate the significant impact of the discretization scheme on the computed solution. It can 
be also appreciated that the diffusion is lower, as expected, when flux limiter techniques are 
employed. 
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Fig. 2   Saturation profiles each 100 seconds, using the first-order scheme (left) and Sweby 
flux limiter (right). 

 
To quantify the convergence different computations were performed using different mesh 
sizes (30, 60, 90, 120 and 150 nodes, respectively). The computed results illustrated in Fig. 3  
represent the partially filled domain to the total length of the mold for both discretization 
schemes. The pressure distribution varies linearly within each saturated element and is 
continuous between elements. The saturation and pressure distributions for a filling time of 
700 seconds are represented in Fig. 4  It can be noticed the presence of three different 
behaviors: fully impregnation, unsaturated and empty domains. In the fully saturated regions 
the model reduces to the usual Darcy model, leading to a linear pressure distribution. In the 
partially saturated regions, the pressure distribution becomes parabolic, as announced in [3]. 
Finally, in the empty domain the pressure vanishes. 
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Fig. 3   Convergence analysis. 
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Fig. 4   Pressure and saturation at t = 700 seconds (left); pressure distributions (right). 
 
 

CONCLUSIONS 
 
A new numerical procedure for simulating LCM processes has been presented. The numerical 
model is based on the consideration of partially saturated flows. For this purpose, the 
advection-diffusion equation describing the evolution of the saturation is solved by using a 
flux limiter upwind scheme. Numerical results confirm that first-order schemes exhibit an 
excessive and no realistic diffusion due to the numerical approximation of the advective term, 
while the flux-limiter scheme shows less extra-diffusive effects. Thus, the flux limiter 
proposed improves significantly the results (with respect to the first-order solutions). The 
results suggest that the present numerical method has a satisfactory capability of simulating 
the LCM process but further convergence analysis must be carried out.  
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